Aplicación de analítica de datos en auditoría forense: revisión bibliográfica sobre detección de fraudes financieros
Application of data analytics in forensic auditing: a bibliographic review on financial fraud detectionContenido principal del artículo
En las últimas dos décadas, la auditoría forense ha transitado desde métodos manuales hacia procesos apoyados por tecnologías digitales y analítica avanzada. El objetivo del estudio es analizar la aplicación de técnicas de analítica de datos en auditoría forense y su impacto en la detección de fraudes financieros en economías emergentes. Se adopta un enfoque cualitativo de tipo documental, mediante una revisión bibliográfica estructurada de literatura académica y fuentes especializadas. La búsqueda se realizó en bases como Scopus, Web of Science, ScienceDirect, IEEE Xplore, ACM Digital Library y ProQuest Central, abarcando el periodo 2020–2025. Se identificaron y analizaron 21 estudios relevantes. Los hallazgos evidencian que la analítica de datos mejora la detección de anomalías y patrones complejos, incrementando las tasas de detección entre 15–25% y reduciendo los tiempos de investigación en 40–60%. Se concluye que su implementación efectiva requiere gobernanza de datos, adopción incremental, marcos legales actualizados y formación interdisciplinaria adaptada a contextos institucionales específicos.
Over the past two decades, forensic auditing has transitioned from manual methods to processes supported by digital technologies and advanced analytics. The objective of this study is to analyze the application of data analytics techniques in forensic auditing and their impact on the detection of financial fraud in emerging economies. A qualitative documentary approach is adopted, through a structured bibliographic review of academic literature and specialized sources. The search was conducted in databases such as Scopus, Web of Science, ScienceDirect, IEEE Xplore, ACM Digital Library, and ProQuest Central, covering the period 2020–2025. Twenty-one relevant studies were identified and analyzed. The findings show that data analytics improves the detection of anomalies and complex patterns, increasing detection rates by 15–25% and reducing investigation times by 40–60%. It is concluded that its effective implementation requires data governance, incremental adoption, updated legal frameworks, and interdisciplinary training tailored to specific institutional contexts.
Descargas
Detalles del artículo
Abdullah, S., Rahman, M., y Hasan, S. (2021). Machine learning-based financial fraud detection systems: A systematic literature review. International Journal of Information Management, 57, 102233. https://doi.org/10.1016/j.ijinfomgt.2020.102233
Akinbowale, O. E., Mashigo, P., y Zerihun, M. F. (2023). The integration of forensic accounting and big data technology frameworks for internal fraud mitigation in the banking industry. Cogent Business & Management, 10(1), 2163560. https://doi.org/10.1080/23311975.2022.2163560
Al-Balushi, A. I. (2024). The Impact of Technology on Forensic Accounting and Fraud Detection: A Case Study of Omani Firms. Journal of Business and Politics, 8(1), 45-62.
Badu, J.. (2025). Fraud Risk in Focus: A Qualitative Analysis of Internal Audit Role in Fraud Risk Management in Africa. Wohllebe & Ross Publishing. Recuperado de https://www.wr-publishing.org/wp-content/uploads/WRP-IJARBM-Badu-Fraud-Risk-Management-Africa.pdf
Banco Mundial. (2024). Global Economic Prospects Report 2024: Navigating Global Headwinds. World Bank Publications. https://www.worldbank.org/en/publication/global-economic-prospects
Becerra, E., Santafé, I., y Becerra, G. (2025). La auditoría forense como herramienta para la detección del fraude financiero en empresas. Ciencia Latina Revista Científica Multidisciplinar, 9(3), 1567-1589. https://doi.org/10.37811/cl_rcm.v9i3.18343
Cheng, H., y Liu, Z. (2020). Ensemble learning methods for fraud detection in online payment systems. Expert Systems with Applications, 162, 113778. https://doi.org/10.1016/j.eswa.2020.113778
Dako, O. F., Onalaja, T. A., Nwachukwu, P. S., Bankole, F. A., & Lateefat, T. (2025). Forensic Accounting Frameworks Addressing Fraud Prevention in Emerging Markets. Multi-disciplinary Frontiers, 2(3), 123-145. https://www.multidisciplinaryfrontiers.com/uploads/archives/20250911170037_FMR-2025-2-098.1.pdf
Dunsin, D., Ghanem, M. C., Ouazzane, K., & Vassilev, V. (2024). A comprehensive analysis of the role of artificial intelligence and machine learning in modern digital forensics and incident response. Forensic Science International: Digital Investigation, 48, 301675. https://www.sciencedirect.com/science/article/pii/S2666281723001944
Johnson, M., Brown, A., y Taylor, J. (2020). Predictive analytics for fraud detection: A machine learning approach to financial crime prevention. Computers & Security, 94, 101863. https://doi.org/10.1016/j.cose.2020.101863
Kokina, J., y Davenport, T. (2017). Artificial Intelligence in Auditing: A Systematic Review of Tools, Applications, and Challenges. ResearchGate. https://www.researchgate.net/publication/315966975_Artificial_Intelligence_in_Auditing_A_Systematic_Review_of_Tools_Applications_and_Challenges
Li, W., Liu, X., Su, J., y Cui, T. (2025). Advancing financial risk management: A transparent framework for effective fraud detection (XGB-GP). Finance Research Letters, 75, 106865. https://doi.org/10.1016/j.frl.2025.106865
Lokanan, M., y Sharma, S. (2025). Reprint of: The use of machine learning algorithms to predict financial statement fraud. The British Accounting Review, 57(1), 101560. https://doi.org/10.1016/j.bar.2025.101560
Mahajan, V. (2025). Forensic Accounting: A Tool Against Corporate Frauds in Emerging Economies. IJRCMS, 7(3), 145-168. Recuperado de https://ijrcms.com/uploads2025/ijrcms_07_430.pdf
Martínez, L., López, M., y Rodríguez, C. (2021). Implementación de algoritmos de machine learning en la detección de fraudes contables: Un estudio empírico en el sector bancario español. Revista Española de Financiación y Contabilidad, 50(3), 287-315. https://doi.org/10.1080/02102412.2021.1912345
Nguyen, C., y Phan, T. H. (2025). Predicting financial reports fraud by machine learning: the proxy of auditor opinions. Cogent Business & Management, 12(1), 2510556. https://doi.org/10.1080/23311975.2025.2510556
Nigro, H. (2025). Contabilidad Forense Digital: Nuevas Herramientas para la Detección del Fraude Financiero. Universidad Nacional de Rosario. Recuperado de https://dialnet.unirioja.es/descarga/articulo/10271365.pdf
Nkomo, P., y Moyo, S. (2021). Digital transformation challenges in forensic accounting: Evidence from South African financial institutions. African Journal of Business Management, 15(8), 145-162. https://doi.org/10.5897/AJBM2021.9234
Organización para la cooperación y el desarrollo económico (OECD). (2024). Annual Report on Organised Crime 2024: The Growing Threat of Financial Fraud. OECD Publishing. https://www.oecd.org/publications/annual-report-organised-crime-2024-5e3d7e2b-en.htm
Ozili, P. K. (2023). Forensic accounting research around the world. MPRA Paper 118789. https://mpra.ub.uni-muenchen.de/118789/1/MPRA_paper_118789.pdf
Rao, S., Singh, R., & Kumar, A. (2023). Ensemble learning methods for credit card fraud detection: A comparative study. Expert Systems with Applications, 215, 119345. https://doi.org/10.1016/j.eswa.2023.119345
Rodríguez, M., Silva, J., y González, A. (2023). Aplicación de técnicas de inteligencia artificial en la prevención de fraudes financieros en Latinoamérica. Revista Latinoamericana de Finanzas, 12(2), 78-95. https://doi.org/10.14483/rlaf.v12i2.45678
Tabassum, M., Rokibuzzaman, M., Islam, M., y Bristy, I. (2025). Data-Driven Financial Analytics through MIS Platforms in Emerging Economies. Saudi Journal of Engineering and Technology, 10(4), 440-446. https://saudijournals.com/media/articles/SJEAT_109_440-446.pdf
Tustón, J., y Macías, E. (2025). Modelos de machine learning para la detección de fraudes financieros: Una revisión de la literatura. UNESUM-Ciencias, 9(2), 220–234. https://doi.org/10.47230/unesum-ciencias.v9.n2.2025.220-234
United Nations Office on Drugs and Crime (UNODC). (2025). World Report on Crime and Pandemic Drug Trafficking 2025. United Nations Office on Drugs and Crime. https://www.unodc.org/documents/world_crime_report/WCR_2025/WCR_2025_Report.pdf
Zhang, Y., Wang, L., y Li, Q. (2022). Blockchain-based solution for transparency and fraud prevention in supply chain finance. Journal of Financial Technology, 8(3), 234-251. https://doi.org/10.1080/23523920.2022.2089123
Zubko, O., Petrov, S., y Ivanov, A. (2023). Machine learning approaches for fraud detection in emerging market banking systems. Computers & Security, 128, 103178. https://doi.org/10.1016/j.cose.2023.103178